Quantum Foundations

It's ok—they're just vectors. Written 9 months ago.

The fundamental principles of quantum mechanics are stored in quote blocks.

States

Quantum states live in vector spaces, represented by bras and kets:

a=(a1,a2,,an),b=(b1b2bn).\bra{a} = (a_1, a_2, \ldots, a_n),\qquad \ket{b} = \begin{pmatrix}b_1\\b_2\\ \vdots \\ b_n\end{pmatrix}.

This Dirac notation elegantly captures the structure of quantum states.

An operator M\bold M acting on a ket satisfies

Mλ=λλ,\bold M\ket{\lambda} = \lambda\,\ket{\lambda},

where λ\lambda is an eigenvalue and λ\ket{\lambda} is its eigenvector.

Observability

Observables correspond to Hermitian operators:

L=L.\bold L = \bold L^{\dagger}.

For a Hermitian operator,

Lλ=λλ,λL=λλ.\bold L\ket{\lambda} = \lambda\ket{\lambda}, \quad \bra{\lambda}\bold L^{\dagger} = \lambda^*\bra{\lambda}.

Then

λLλ=λλλ=λLλ=λλλ.\bra{\lambda}\bold L\ket{\lambda} = \lambda\,\braket{\lambda|\lambda} = \bra{\lambda}\bold L^{\dagger}\ket{\lambda} = \lambda^*\,\braket{\lambda|\lambda}.

Since L=L\bold L=\bold L^{\dagger} and λλ0\braket{\lambda|\lambda}\neq0, it follows that λ=λ\lambda=\lambda^*; hence, observables yield real values.

Observable and measurable quantities are represented by Hermitian operators.

Measurements

The possible outcomes of measuring an observable L\bold L are its eigenvalues {λi}\{\lambda_i\}. If the system is in eigenstate λi\ket{\lambda_i}, the measurement result is guaranteed to be λi\lambda_i.

Given an initial state Ψ(0)\ket{\Psi(0)}, its time evolution is governed by a unitary operator U(t)\bold U(t):

Ψ(t)=U(t)Ψ(0),U(t)U(t)=I.\ket{\Psi(t)} = \bold U(t)\ket{\Psi(0)}, \qquad \bold U^{\dagger}(t)\,\bold U(t) = I.

Unitarity preserves inner products, separating quantum dynamics from classical intuition:

ClassicalState and measurement coincide.
QuantumState evolution (via U\bold U) and measurement (via L\bold L) are distinct.

After evolving to A\ket{A}, measuring L\bold L yields probabilities

P(λi)=AλiλiA.P(\lambda_i) = \braket{A|\lambda_i}\,\braket{\lambda_i|A}\,.

If A\ket{A} is the post-evolution state, the probability of obtaining λi\lambda_i upon measuring L\bold L is P(λi)=AλiλiAP(\lambda_i)=\braket{A|\lambda_i}\braket{\lambda_i|A}.

Energy and Time Evolution

For an infinitesimal interval ϵ\epsilon, unitarity requires

U(ϵ)U(ϵ)=I.\bold U^{\dagger}(\epsilon)\,\bold U(\epsilon) = I.

Expanding to first order,

U(ϵ)=IiϵH,U(ϵ)=I+iϵH.\bold U(\epsilon) = I - i\epsilon\,\bold H, \quad \bold U^{\dagger}(\epsilon) = I + i\epsilon\,\bold H^{\dagger}.

Applying this to the state,

Ψ(ϵ)=(IiϵH)Ψ(0),\ket{\Psi(\epsilon)} = (I - i\epsilon\,\bold H)\ket{\Psi(0)},

leads to

Ψ(ϵ)Ψ(0)ϵ=iHΨ(0),\frac{\ket{\Psi(\epsilon)} - \ket{\Psi(0)}}{\epsilon} = -i\,\bold H\,\ket{\Psi(0)},

which in the limit ϵ0\epsilon\to0 becomes the time‑dependent Schrödinger equation:

itΨ(t)=HΨ(t).i\hbar\frac{\partial}{\partial t}\ket{\Psi(t)} = \bold H\,\ket{\Psi(t)}.